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S u m m a r y  
The localization model of rubber elasticity is applied to the 

deformation behavior of networks formed by cross-linking melts 
in various states of strain, including equibiaxial extension and 
pure shear. 

I n t roduc t ion  
In the first paper of this series (1), the localization model of 

rubber elasticity (2) was applied to the data of Batsberg et al. (3) 
in which a melt was (a) uniaxially strained, (b) cross-linked in 
the strained state, (c) released from its stretched state and, 
finally (d) uniaxially deformed in various directions. The 
observed anisotropic elastic response was in good qualitative 
agreement with the theoretical predictions. In this paper, the 
localization model is applied to the data of Hvidt et al. (4) for 
experiments similar to that described above, but with initial 
biaxial extension and pure shear deformations of the melt. 

Localization Model Equations for the Hvidt Data 
The concepts underlying the localization model have been 

fully described elsewhere (5). In applying the localization model 
to the experimental systems under consideration here, the 
deformation of the localization contribution to the free energy is 
taken relative to the unstrained melt state and the deformation 
of the connectivity contribution is taken relative to the strained 
state at which cross-linking occurs. The total elastic free energy 
expression is thus (1): 

_ -2/3 

AF = A  ~ [Ai,2 2 11+B ~ [Ai,1 - 1] 
i = x  ,y ,z i =x  ,y ,z 

(i) 
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where  ~,i,1 is the extension ratio in the ith direction, relative to 
the undeformed,  uncross-l inked state and ~i,2 is the extension 
ratio in the ith direction relative to the state of strain at which 
cross-l inking occurred. The parameter  13 may be taken to be 
adjustable, but we will use the value of 13 = -1/2 as determined 
in the space filling tube version of the localization model (2). 

Equibiaxial Extension Deformation 
The state of ease, ~,s, that results from releasing the network 

formed by cross-linking the equibiaxially strained melt at ~-o, is 
determined by taking aF/aTVs = 0 in equation 1 and using 

~s -2 
,a,x, 2 = ,a,y ,2 = "~o ' 'a'z ,2 = ('a'x,2) 

-2 
Xx,1 = ~ y , l =  Xs ' 'a'z,l=(Xx,1 ) 

This yields 

2 4 
6 6 &o fl &s 4fl -2fl 

0 = "lo - Xs p (Zs - Xs ) (2) 

where P = A/B. 

The stress-strain behavior of the sample relative to its state 
of ease can now be calculated using equation 1. We consider two 
cases:  

a) Equibiaxial extension. In this case 
as ~_~__s ) -2)--2 

~y ~ ' ~z ,2 = ( ~x,2 = ,2 - ~'o o 

- 2  - 2  
~'y ,1 = Xy,l= ~" s ~" , ~'z ,l = ( X s ) ~, 
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The resulting stress equation is 

~ 4B[P(r2Z r_4 _5)+ ~(~,s4/~:/~-I -2/~ -2~-1 = - _ Z s ~. )1 (3) 

where r = (Xs/~.o). 

b) Uniaxial elongation along the x-axis in the plane of strain. 
In this case 

Zs ~'s ~-1[ 2 Z s -2 ~-1/2 
z x , 2 = V  ' ) 

Zx,l= ~sZ , ~y,1 = ~s~-l/2 ' Zz,l= ~s-2~-1/2 

which yields the stress equation 

Crbx B {P[2r2Z-  (r2+r-4)Z-21+O ~Zs -2~ 4~)Z~-I -2~ -2~ -1 = + Z s  - 2 Z  s Z ]} ( 4 )  

Pure Shear Deformation 
For pure shear of the melt, cross-linking in the strained 

state and finally releasing the network to its state of ease, one 
uses in equation 1 

Zx'2-  Zo , Zy ,2= l  , Zz, 2=(Zx, ~ 

-1 
/~x,1 = /~s , Zy ,2 = 1 , Zz ,1 = (Zx,1) 
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The state of ease is then given by 

2 2 
4 4 f l k  ~ k s 2,8 - 2~  

0 = k o - k s p [k s - k  s (5) 

The stress-strain behavior relative to the state of ease is 
de termined for three deformat ion cases: 

a) Pure shear. Here, 

kx, 2 = -~oo-o k- , ky ,2 = 1 ' kz ,2 = ( )- lk-1 
o 

-1 -1 
kx, l =  /1. sk  , ky,1 = 1 , kz , l=  k s k 

giving the stress equation 

ffss 2B [p(r2k r_2k-3) + /~(ks2/3k2/3 -1 -2fl -2/3 -I 
= - - k s k )] (6) 

b)  Uniaxial elongation along the x axis. Here, 

;t s k- l /2  ;L s -1 -1/2 
kx,2 ='~'---o k , ky,2 ' kz ,2= o 

-112 -1 ~ - 1 / 2  
kx,1 = ~sk , ~y,1 = & ' kz , l=  ks 

with the resulting stress equation 

Crsx = B {P [2r2k - ( r  -2 + 1)~ -2] +/3[(k  s 
+ 1)~/~-1 -213 -2/3 -1 

- 2 ~  s ~ ]} (7) 
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c) Uniaxial elongation along the y axis. In this case 

a s ,-1 ~-1/2 Z s -1/2 = A A z =(--~'-') 
A'x,2 = A-o-o A ' Ay ,2 ' ,2 o 

~'x,l = As ~-I/2 Ay -I -I/2 
,l=Z Z =A, s Z 

The resulting stress equation is 

Crsy = B {P[2A _ ( r2+  r_2)A_21 + fl [(Zs-2/3 + A's 2/~) A/~-I _ 2Z-2/3 -11] (8) 

Comparison of Theory and Experiment 
For equibiaxial extension, we used equation 2 with the 

experimental ko = 1.4220, ~s = 1.0830 values and 13 = -1/2 to 
calculate P equal to 0.0698. These values were then used to 
best-fit equation 3 to the data for equibiaxial extension from the 
state of ease. B was found to be .6440. Since B should be 
independent of the direction of strain from the state of ease (1), 
these ~.o, ~.s, ]3, P and B value were then used in equation 4 for 
uniaxial deformation along the x-axis. (An alternative approach 
is to determine the value of B which best-fits both types of 
deformation from the state of ease simultaneously. This would 
provide a somewhat better quantitative fit between theory and 
experiment but the qualitative features would remain the same). 
The two theoretical curves are shown with the data in Figure 1. 
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Figure 1. Stress-strain response of deformation from the state of 
ease: ( n )  equibiaxial elongation data, (o) x-elongational data, 
( ) equation 3 for equibiaxial extension, ( . . . .  ) equation 4 
for uniaxial elongation along the x-axis. 

For pure shear deformation, the experimental values of  
3.o = 1.0910 and 3-s = 1.0200, were used, along with 13 = -1/2, in 
equation 5 to determine a P value of 0.0677. These values were 
employed in equation 6, to obtain a best-fit value of B = 1.4232 
for pure shear deformation from the state of ease data. These B, 
P, 3-s, 3-0 and 13 values were then used in equations 7 and 8. The 
resulting theoretical curves and data are presented in Figure 2. 
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Figure 2. Stress-strain response of deformation from the state of 
ease: ([:1) pure shear, (o) x-elongation, (zx) y-elongation, ( - - - - - )  
equation 6 for pure shear, ( ) equation 7 for uniaxial 
deformation along the x-axis, ( . . . .  ) equation 8 for uniaxial 
deformation along the y-axis. 

In Figure 2, several features should be noted: (a) while the 
deformations along the x and y axes are very similar, other data 
sets (5) indicate that the y deformation falls below the x 
deformation, in agreement with the localization theory, (b) the 
theoretical cross-over at very small strains is a result of the non- 
zero axial stresses at the state of ease (6) and occurs for any B 
value used in the theoretical expression. Experimentally both 
the method of sample preparation and the inherent uncertainty 
in small strain data may mask this cross-over phenomena (7). 
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Conclusions 
The localization model successfully predicts the qualitative 

features of the deformation responses found in the experiments 
of Hvidt et al. (4), as it does for the similar studies of Batsberg et 
al. (3). In view of the previous success of the localization model 
in predicting the uniaxial extension-compression behavior of 
networks formed in the unstrained state (8) and recent 
successful tests for other deformation conditions, e.g. torsion and 
swelling [to be published], the model appears to be remarkably 
useful, especially in view of its conceptual intuitiveness and 
mathematical simplicity. 
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